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Abstract

In contexts where Reinforcement Learning (RL) agents are contemplated for critical appli-
cations such as medical diagnostics or autonomous vehicular control, model interpretability
is imperative. However, the most successful agents are typically the least interpretable
ones. The advent of symbolic policies, exemplified by NUDGE (Delfosse et al., 2023b),
endeavors to establish inherently interpretable models. Interpretability of these models
holds true for rudimentary environments with a limited action space and succinct episodes.
But, it does not for complex RL tasks like those found in the real world where logical rule
sets inevitably grow inscrutably large.

This thesis advocates the incorporation of temporal abstraction into symbolic policies
to maintain interpretability even within complex tasks. ω-NUDGE is proposed which is
a neuro-symbolic, hierarchical policy extension of NUDGE, building up on the options
framework and the option-critic. The MeetingRoom environment is introduced to eval-
uate hierarchical agents like ω-NUDGE. Empirical results within MeetingRoom show
that ω-NUDGE outperforms NUDGE significantly in both performance and interpretability.
The code was made publicly available on GitHub1.

1https://github.com/MaggiR/logic-options
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1. Introduction

Reinforcement Learning (RL) is the field of Machine Learning (ML) that deals with
sequential decision-making. RL practitioners showed remarkable results on games like
DotA 2 (Berner et al., 2019) and Go (Silver et al., 2016), but also in real-world applications
like robotics (Mahmood et al., 2018), autonomous driving (You et al., 2017), recommender
systems (Zhang et al., 2019), and fleet management (Lin et al., 2018).

Most of these achievements were accomplished through the usage of deep Neural Net-
works (NNs), a standard model architecture in AI. NNs proved to have outstanding
flexibility when it comes to learning high-dimensional, complex functions. Nevertheless,
NNs incorporate millions to even trillions of parameters, making their inner workings
and reasoning obscure humans. Model interpretability is a requirement in high-stakes
applications where failures incur high cost, like in medicine or public traffic. The reason
is that interpretable models are better verifiable and, consequently, more trustworthy.
In decision processes with ”significant” effect, even European law requires the used AI
models to be fully explainable. (Goodman and Flaxman, 2016)

Interpretability in RL is an unsolved problem. (Casper et al., 2023) RL models can impres-
sively solve tasks, but there is still a long way to go to ultimately train and understand
well performing real-world RL models. The rapidly evolving field of Explainable AI (XAI)
deals with the development of intrinsically understandable AI models or methods that
make black-box models transparent post-hoc. In RL, symbolic reasoning methods were
developed to support intrinsic model interpretability. One of them is a recently proposed
framework called. Neurally gUided Differentiable loGic policiEs (NUDGE) (Delfosse et al.,
2023b) It achieves model interpretability through the usage of First-Order Logic (FOL)
and differentiable forward reasoning. Such symbolic frameworks not only enable model
interpretability but also, for example, promote objective robustness (Koch et al., 2021).

Interpretability and model size follow an anti-correlation: Large models are harder to un-
derstand than smaller ones, even when consisting of inherently interpretable components.
The reason is that humans have limited capacity to digest information—if confronted with
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thousands of FOL, a human wouldn’t be able to look through. Unfortunately, large models
are a typical result of learning real-world tasks which is due to the task’s complexity
coming from, e.g., high dimensionality and long action sequences.

Created with DALL-E 3.

For example, think of a robot that learned to bake a cake.
The robot relies on its servo joints to grasp and move objects,
to manipulate them, etc. For a human, baking a cake is a
rather simple task and consists of algorithmically following
a baking recipe—without the inefficient thinking of how to
exactly move their fingers in order to, e.g., crack an egg.
In other words, humans learned a temporal abstraction of
their actions they perform: Pouring milk into the bowl is
an abstraction of getting the milk package out of the fridge,
opening it and turning it so that the milk can flow. Opening
the package, in turn, is an abstraction of moving the hand to
the lid and performing a movement that rotates the lid, and
so on. In essence, temporal abstraction is a natural concept

that makes processing information in the world more efficient. In fact, in very high-
dimensional problems, RL researchers argue that temporal abstraction is vital. (Konidaris
and Barto, 2009; Shu et al., 2017) However, most RL methods do not incorporate temporal
abstraction. If we were to ask the (preferably logic) cake-baking robot what recipe it
follows, it would either return an extremely long list of servo joint commands or an
uninterpretably large set of logic rules.

Temporal abstraction in RL can be achieved through a hierarchical policy structure as
depicted in Figure 1.1. The idea comes from the Hierarchical Reinforcement Learning
(HRL) domain which was originally introduced to efficiently solve problems with very long
decision sequences and sparse feedback. (Hutsebaut-Buysse et al., 2022) HRL models
consist of a collection of specialized sub-policies, structured in a hierarchy, with a meta
policy at the top. See also Figure 1.1. The meta policy πmeta determines the current
subgoal and selects the proper sub-policy πi to solve that goal, making use of the divide-
and-conquer principle. The hierarchy of the model just needs to be chosen according
to the goal hierarchy that underlies in the actual problem. For instance, baking a cake
involves subgoals like having all the necessary ingredients gathered or like having added
a sweet cream topping. In fact, a hierarchical subgoal structure is a common property
shared among real-world problems. (Jong et al., 2008; Hutsebaut-Buysse et al., 2022)
Each such subgoal can be addressed through a dedicated sub-policy. Sub-policies execute
a sequence of lower-level actions until the subgoal is reached, cf. Figure 1.2. In a sense, a
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sub-policy unifies the sequence of tasks it performs into one ”high-level” task. In other
words, a sub-policy is an element of temporal abstraction.

π
prepare a cake

πmeta
prepare a cake

π1

gather ingredients

π2

make dough

π3

bake

S1
ingredients

ready

S2
dough
mixed

S3
cake
baked

S1
ingredients

ready

S2
dough
mixed

S3
cake
baked

G
cake
baked

G
cake
baked

Figure 1.1.: The benefit of temporal abstraction, here with the cake baking example. The
goalG of baking a cake has several subgoals Si. In the typical RL case (left), a
single atomic policy π deals with each subgoal Si via actions. By introducing
specialized lower-level policies πi, the resulting higher-level policy πmeta now
only needs to choose the right sub-policy for the right subgoal—making πmeta
significantly simpler compared to π.

Interpretability of NUDGE is evident on simple tasks like in the GetOut environment.
(Delfosse et al., 2023b) However, it is reasonable to expect that, just as in the cake-baking
robot example, the size of the policy rule set explodes and, thus, is inscrutable to humans.
The core idea of this thesis lies in the application of hierarchical sub-policies to make
NUDGE better interpretable. Though HRL was already identified as a promising direction
for better interpretability, it is yet an under-explored direction with a lot of room for
further examination. (Hutsebaut-Buysse et al., 2022)

Usually, we are not interested in the low-level action movements but rather in the high-level
strategy—the big play—of how to solve a problem. Just like humans rationalize about
where to spend the next vacation and not how to move the mouse at the computer in order
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π

πmeta

Standard RL

Hierarchical RL

time

time

S1 S2 S3

π1 π2 π3

Figure 1.2.: The example from Figure 1.1 on a time dimension, showing that π needs to
take an action at every time step while πmeta can focus on subgoal changes.

to reserve a hotel. Therefore, it is not detrimental to use black-box sub-policies like NNs in
the hierarchy. Allowing them in the architecture, we can combine the strength of neural
flexibility with symbolic interpretability. Neural sub-policies also overcome two of NUDGEs
shortcomings: The generally limited expressiveness and the inapplicability to continuous
action spaces. Moreover, the way how humans learn to interact with their environment
can serve as another role model. More specifically, humans learn incrementally: first, as a
baby, how to move fingers, hands and feet, touch and grasp objects, then, as a child, how
to move objects and later how to use objects as tools for a higher purpose. This analogy
invites to exploit the composability of hierarchical policies for curriculum learning, i.e.,
pretraining the sub-policies on specific sub-tasks before assembling them together into
the hierarchy.

Putting the aforementioned ideas into practice, this work introduces a hierarchical ex-
tension of NUDGE, called ω-NUDGE. It builds upon the options framework (Sutton et al.,
1999), a very popular specification of hierarchical sub-policies. Furthermore, the options-
critic architecture (Bacon et al., 2016) is used as the model’s base structure where NUDGE
serves as the meta policy. Overall, this work seeks to answer the question:

Can we use options to make NUDGE more interpretable, even when we use
black-box models as options?

On a sidenote, the literature lacks a unified definition of interpretability and explainability.
(Molnar et al., 2020) Without going into the details, this work regards interpretability as
the intrinsic property of a model to be understandable to the user by design. Explainability,
on the other hand, is the model’s ability to present convincing and understandable post-hoc
explanations of its rationale or decisions to a human. (Arrieta et al., 2019)
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Overall, this work makes the following main contributions:

• A novel, neuro-symbolic RL model called ω-NUDGE is proposed that extends Neurally
gUided Differentiable loGic policiEs (NUDGE) (Delfosse et al., 2023b) by a hierarchy
of sub-policies.

• Empirical evidence is delivered that shows the improved interpretability of ω-NUDGE
over NUDGE.

• A new environment called MeetingRoom is introduced as a proof-of-concept play-
ground for hierarchical models.

• The options framework is implemented, including an option-version of the state-
of-the-art Proximal Policy Optimization (PPO) (Schulman et al., 2017) learning
algorithm. The code was made publicly available on GitHub, see also Appendix A.3.
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2. Background

We begin with the theoretical introduction of the concepts used in this work. Section 2.1
reiterates the fundamental RL notions and defines commonly used symbols, substantially
following the book of Sutton and Barto (2017). Well-versed readers can skip the first two
sections and begin with the section about options, Section 2.3, followed by a closer look
at NUDGE.

2.1. Foundations of Reinforcement Learning (RL)

We start offwith an example. Imagine a talented pizza chef opening his first own restaurant.
He has a family he provides for and the loan for purchasing the establishment’s premises
needs to be paid off. Therefore, he wants to generate high revenue quickly. Revenue,
in turn, comes from popularity and publicity. Since the pizza chef has no experience
in running a restaurant, he needs to learn and find a good strategy how to successfully
maximize his revenue.

Created with DALL-E 3.

Speaking in terms of Reinforcement Learning, the pizza chef
is the agent. Everything and everyone he interacts with
(restaurant, guests, etc.) are part of the environment. The
pizza chef has a range of actions he can execute, for example,
baking a tasty pizza according to the guest’s preferences,
entertaining the guests, cleaning up the place, etc. For each
pizza he serves, he earns a small amount of money, referred
to as reward. Pleased guests increase the reward by providing
a tip, returning regularly, or telling other people about the
nice restaurant. Not every action is appropriate all the time.
For example, cleaning up an already tidy restaurant is a mere
time waste. Or, if there are more guests asking for pizza than
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he can handle, he needs to hire an employee. In other words,
the action choice depends on the state of the environment. The heart of Reinforcement
Learning (RL) lies in finding an action choice strategy that maximizes the sum of all rewards
(the pizza chef ’s revenue). This learning paradigm draws inspiration from behavioral
psychology, aiming to mimic the way how living creatures learn from the consequences of
their interactions with the surrounding environment.

More generally, RL is an ML optimization method for maximizing the dynamic objective
of a sequential task. Figure 2.1 showcases the general RL setting. An agent interacts with
an environment by observing a state S and taking a proper action A, receiving a reward
R, repeating the procedure forever or until termination.1

Agent

Environment

action Astate S reward R

Figure 2.1.: The fundamental RL setting: An agent interacts with an environment by taking
actions and observing next states and rewards.

Indices represent time steps, i.e., Rt is the reward at time step t, analogously for states
and actions. Repeating the interaction loop yields a sequence S1, A1, R1, S2, A2, ... which
is called trajectory. If there is a notion of termination like in tennis (the player winning
or losing a game) the (finite) trajectory part that represents one tennis game is called
episode. That is, trajectories can consist of multiple episodes (the tennis player playing
multiple tennis games or the pizza chef starting anew with a different restaurant). The
sum Gt := Rt +Rt+1 + ... of all rewards gathered from time step t on is referred to as the
return (at time step t). Furthermore, the discounted return is defined as

Gt := Rt + γRt+1 + γ2Rt+2 + ... =

∞∑︂
k=0

γkRt+k

where 0 ≤ γ ≤ 1 is the discount factor.

The agent’s strategy, which action to take at which state, is called policy. Formally, a
policy is a mapping, denoted with π, that assigns an action At to a state St. If we denote
1Here, we use capital letters to denote random variables while lowercase letters represent value instances.
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the set of all possible states, the state space, with S and the set of actions, the action
space, with A, then π : S → A. In the case where the policy π is non-deterministic, we
write π(a|s) := π(At = a|St = s) for the probability that action a is selected at state s
during time step t. From here on, we assume finite episodes of length T for simplicity
and consider the general case where π is non-deterministic.

Given π, it is useful to predict the return one can expect at a given state s. We define

V π(s) := E[Gt | St = s] = E

[︄
T−t∑︂
k=0

γkRt+k

⃓⃓⃓⃓
St = s

]︄

and call it the value of s under policy π. In words, the value is the expected discounted
sum of rewards. Besides, V π is called the state-value function. The symbol π is dropped
if the policy is clear from the context. Similarly,

Qπ(s, a) := E[Gt | St = s,At = a] = E

[︄
T−t∑︂
k=0

γkRt+k

⃓⃓⃓⃓
St = s,At = a

]︄

is the value of taking action a at state s, the function of which is referred to as the
action-value function.

The functions V π or Qπ have comparably high variance, rendering them less appropriate
for training. Instead, the advantage Â

π
(s, a) := Qπ(s, a)−V π(s) is a better estimate with

less variance. The advantage quantifies the benefit of taking action a at state s compared
to the best action available in s, all under policy π.

2.1.1. (Semi-)Markov Decision Process

Typically, the environment’s underlying transition logic can be modeled as a finite Markov
Decision Process (MDP) which is a tuple (S,A, P,S0, γ) where S is the set of states, A is
the set of actions, P : S×A×S×R→ [0, 1] is the transition function that maps (s, a, s′, r)
to the probability that taking action a in state s results in next state s′ and reward r,
denoted with P (s′, r | s, a), S0 is the set of initiation states, and γ is the discount factor.

A core property of an MDP is that the transition P only depends on the current state and
the action taken. In particular, all previous states don’t have any influence on the next
transition when s is given.

14



2.1.2. Training Agents: The Actor-Critic Framework

RL agents can be trained in various ways, divided into policy gradients, dynamic program-
ming, Monte-Carlo approaches, among others. One of the most popular training schemes
is the actor-critic framework. The critic learns the state-value function while the actor
embodies the policy which is trained using the critic. See Figure 2.2 for a visual summary.

Agent

Actor

Critic

Environment

A

S

R

Figure 2.2.: The architecture of an actor-critic. The actor takes state S and chooses
action A to interact with the environment. As a result, reward R is submitted
to the critic which uses it to train the actor.

The arguably most important formal finding is the Bellman optimality equation which
puts the state-value and the action-value function into a self-recursive relation as follows:

V (s) = max
a∈A

∑︂
s′,r

P (s′, r | s, a)[r + γV (s′)], (2.1)

Q(s, a) =
∑︂
s′,r

P (s′, r | s, a)
[︃
r + γmax

a′∈A
Q(s′, a′)

]︃
. (2.2)

This fact is used by Temporal Difference (TD) learning which updates the state-value
estimator via the update step

V (S)← V (S) + α
[︂
R+ γV (S′)− V (S)⏞ ⏟⏟ ⏞

TD error

]︂
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We also say that TD bootstraps the target value by reusing estimates of next state values.

Besides, RL models can also learn the environment’s dynamics in order to become explicitly
able to anticipate the consequences of an action. Such models are called model-based, in
contrast to model-free.

2.1.3. Proximal Policy Optimization (PPO) as the State-of-the-Art Training
Algorithm

This work uses the Proximal Policy Optimization (PPO) by Schulman et al. (2017). It is the
state-of-the-art for training RL models. If we parameterize the policy π with parameters θ,
we write πtheta. PPO incorporates the PPO loss

LPPO(θ) := −Êt

[︂
min

(︂
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)︂]︂
,

where 0 ≤ ϵ and where

rt(θ) :=
πθ(at, st)

πθold(at, st)
.

ϵ is the clipping factor used to limit the extend of the policy update to reduce the chance
of harmful policy updates.

2.2. Explainable RL: How to Make Agents Understandable and
Trustworthy?

This section presents an overview of the state-of-the-art in Explainable RL (XRL), the XAI
subfield for RL.

As mentioned in the introduction, AI model architects can achieve explainability post-hoc
or intrinsically. Furthermore, explanations can be local or global. A local explanation de-
scribes the model’s decision for a single, specific input instance whereas global explanations
capture the model’s overall prediction behavior. (Milani et al., 2022)

Since recently, XRL draws an extensive attention and research. (Milani et al., 2022;
Vouros, 2022; Glanois et al., 2021; Puiutta and Veith, 2020; Alharin et al., 2020; Krajna
et al., 2022; Wells and Bednarz, 2021; Dazeley et al., 2022; Qing et al., 2022; Heuillet
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et al., 2020; Hickling et al., 2022). According to Vouros (2022), the amount of XRL
work is already large and the achieved progress towards full transparency is significant.
Nevertheless, the authors point out a whole range of unsolved fundamental issues inside
that field: For example, work on the qualities of a ”good” explanation for an RL agent is
missing and there is lack of a comparative evaluation benchmark for explainability and
interpretability.

Dazeley et al., 2021 suggest different ”levels of explanation” based on the agent’s intentions.
For example, first-order explanations explain agent decisions based on, inter alia, ”the
agent’s underlying internal disposition towards the environment.” In contrast, second-
order explanations are generated based on the agent’s belief of its own or other actors’
mental states.

Milani et al., 2022 introduce a taxonomy that divides XRL methods into three categories:
(1) Feature importance methods which generate explanations that point out decision-
relevant input features, (2) learning process & MDP methods present instances of the past
experience or components of the MDP that imply the current behavior, and (3) policy-level
methods which describe the agent’s long-term behavior.

Qing et al., 2022 categorize XRL explanation frameworks into four different types: (1)
Model-explaining methods aim to produce an agent that has an interpretable operation
in its inner structure. (2) Reward-explaining methods either decompose the reward to
understand the individual component’s influence on the agent’s decisions or they directly
obtain an understandable reward function. (3) State-explaining methods locally quantify
the influence of state features or past observations on the agent’s decision. Finally, (4)
task-explaining methods are used in the context of hierarchical agents to decompose the
main goal into (discovered) sub-goals and describe the agent’s behavior regarding the
sub-goals.

2.3. Temporal Abstraction via High-Level Actions, a.k.a. Options

Revisit the cake-baking robot example from the introduction. We want to abstract away
from the long series of servo joint commands. Hierarchical Reinforcement Learning (HRL)
is the key tool to help. HRL agents don’t have just a single policy but multiple ones,
arranged in a hierarchy. Higher-level policies execute higher-level tasks, like cracking an
egg or completing a recipe step, while lower-level policies deal with lower-level tasks such
as robot body maneuvering or arm positioning.
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Options are an HRL approach introduced by Sutton et al. (1999). The authors define an
option as follows:

Definition 2.3.1 (Option). An option ω is a triple (Iω, πω, βω) in which

• Iω ⊆ S is an initiation set,

• πω : S → A is a policy, the intra-option policy, and

• βω : S → [0, 1] is a termination function.

The set of all options is denoted with Ω.

An option can be seen as a temporally extended action. A higher-level policy πmeta, called
meta policy, selects among options Ω. Each option ω ∈ Ω is available only at states S ∈ S
that are in the option’s initiation set, i.e., S ∈ Iω. If ω is selected by πmeta, that option
executes its own policy π to choose the actual environment actions. The option ω is
terminated depending on the termination probability determined by β. More specifically,
the higher β(s), the more likely ω terminates when approaching state s.

Besides, we can consider actions as a special case of options: Let a ∈ A be an action. Then,
the corresponding option is ω = (S, a,1S) which is the option that is available everywhere,
selects action a always, and terminates immediately. Such an option is called primitive.

The action space of the intra-option policy does not necessarily consist of the environment
actions but, instead, can comprise of another set of (lower-level) options. Exploiting this
fact, we can construct a hierarchy with an arbitrary number of levels.

Definition 2.3.2 (Option hierarchy). Let Ω0 := A be a set of actions and Ω1, ...,ΩL−1

be sets of options where L ∈ N and each option ω(l) ∈ Ωl with policy π(l) chooses over
options Ωl−1. Furthermore, let πmeta be a meta policy choosing from options ΩL−1. Then,
H := (Ω0,Ω1, ...,ΩL−1, πmeta) is called (option) hierarchy with size L. If L = 1, we call
the hierarchy flat.

In the case L = 1, the model consists only of the meta policy choosing actions. A model
with L ≥ 2 has one meta policy and L− 1 levels consisting of options (actions). With Ωl

we denote the set of options of level 0 ≤ l < L. Similarly, ω(l) ∈ Ωl is an option of level
l, its policy is denoted with π(l). In the special case l = 0, i.e., the lowest level, the set
of options is the set of environment actions A. For l < L, the intra-option policy π(l+1)

chooses among the options Ωl. See Table 2.1 for an exemplary summary.
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Level Options Policy Description Examples

4 – πmeta the global policy bake a cake

3 Ω3 π
(3)
j complete a recipe step mix the dough, weigh 250g of

butter

2 Ω2 π
(2)
j

grab, place, manipulate
objects

crack an egg, turn the milk
carton

1 Ω1 π
(1)
j

position body, arm,
finger

move to the fridge, grab sugar
package

0 Ω0 := A - environment actions servo joint commands

Table 2.1.: Exemplary option hierarchy in the cake baking example with L = 4 levels.

Each executing option has an executing caller from a higher level, inducing a chain of
active options, giving rise to the following

Definition 2.3.3. Let H := (Ω0,Ω1, ...,ΩL−1, πmeta) be an option hierarchy. If option
ωl ∈ Ωl calls/selects option ωl−1 ∈ Ωl−1 we say ωl invokes ωl−1 and write ωl → ωl−1.
Moreover, we say that ωl−1 executes in the context of ωl. Analogous for policies, especially
the meta policy πmeta. We call a full sequence πmeta → ωl−1 → ... → ω1 the invocation
trace.

The termination of a higher-level option enforces termination of all lower-level options
down the invocation trace. A visualization of the invocation trace can be found in Figure 2.3.
It shows the entire option hierarchy and indicates the chain of invoked options.

The introduction of options invalidates the underlying Markov Decision Process because
the ultimate action choice does not only depend on the current state (as required by the
Markov assumption) but also on the current invocation trace. The MDP augmented by
options is a Semi-Markov Decision Process (SMDP). (Sutton et al., 1999; Araki et al.,
2021) From the MDP perspective, options can be seen as shortcuts between states, cf.
Figure 2.4.
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πmeta

ω
(3)
1 ω

(3)
2 ω

(3)
3

ω
(2)
1 ω

(2)
2

ω
(1)
1 ω

(1)
2 ω

(1)
3 ω

(1)
4

a1 a2 a3 a4 a5

Level 4

Level 3

Level 2

Level 1

Level 0

Figure 2.3.: The invocation trace inside a 4-level option hierarchy. Arrows indicate which
option invoked which lower-level option/action.

2.4. NUDGE: A Logic Framework for Learning Symbolic Policies

This work uses Neurally gUided Differentiable loGic policiEs (NUDGE) (Delfosse et al.,
2023b) because it is capable to train interpretable and explainable policies that are
competitive with neural baselines on simple tasks. NUDGE is a framework that, with the
help of a neural value network, learns a symbolic actor through differentiable forward
reasoning.

More specifically, NUDGE takes a logic state representation as input and grounds the
facts by computing weighted object relations, such as obj1 being close to obj2. Next,
NUDGE applies differentiable forward reasoning by means of the grounded relations and
First-Order Logic (FOL) rules to determine the probabilities of the actions to use. Figure
2.5 provides a visual summary of the reasoning process. The policy can then be interpreted
through the set of weighted action rules. NUDGE generates explanations for a given action
via input gradients. The user defines the relevant objects, the object relations, and the
initial FOL action rules, introducing prior knowledege to the agent.
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s0 s1 s2 s3 s4 s5 s6a0 a1 a2 a3 a4 a5

ω0

ω1

Figure 2.4.: The SMDP induced by options ωt over an MDP with states st and actions at.

Figure 2.5.: NUDGE in a nutshell, taken from Delfosse et al. (2023b).

The NUDGE model architecture is defined as an actor-critic. The actor is the logic forward
reasoner conducting the steps described above while the critic is a fully flexible NN. During
training, the latter guides the former towards optimality. NUDGE uses standard PPO to
train the neural critic. In contrast, the actor with policy πW and weights W is updated via
simple gradient ascent, i.e.,

W←W+ δ∇W lnπW(st),

where δ is the TD(0) error of the neural critic. With this weight update, the logic policy
πW learns to maximize the expected return.
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3. Method

Building up on the theoretical foundations from the last chapter, this chapter is going to
further lay out the core idea of this work, specify the methodological approach how to
answer the research question and outline the needed experiments to test the proposed
ω-NUDGE model. Furthermore, this chapter offers a new algorithm how to learn options
using PPO and GAE and, finally, examines the expectations and additional theoretical
implications of applying the outlined method.

3.1. How to: Improve Policy Interpretability via Options

We want to investigate the central research question, namely whether options can help to
make a logic policy more understandable. Or, in short, if ω-NUDGE is better interpretable
than NUDGE. There is good reason to believe that this is true, at least for environments
with long episodes and heterogeneous subtasks: If for each subtask there is a specialized
option that can solve it, the meta policy merely needs to identify the current subtask from
the observation and choose the proper option to solve it. The subtask-option-assignment
problem is substantially simpler than the entire RL problem since the former is a strict
subset of the latter. In other words, the meta policy can focus on macro-strategic planning
rather than micro-management. Thus, it is reasonable to expect that the number of FOL
rules to build up the meta policy program will be smaller, hence better interpretable, than
in the flat counterpart. Of course, parts of the agent will then be hidden in black-box NN
options. However, we are interested in the transparency of the high-level thinking of the
agent, not the low-level execution. Therefore, we can tolerate that the lower-level policy
remains non-interpretable to us.

Since each option corresponds to a subgoal, each meta policy decision inherently incor-
porates the information which subgoal the agent currently wants to achieve. Subgoal
descriptions are encoded as human-readable predicate names. Subgoals typically are
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states that the agent must pass in order to reach the final goal. Such states are also called
access states.

Pretrained options should be used whenever possible because it improves the learning
success chance—and follows the way how humans learn. Therefore, the experiments with
ω-NUDGE should include runs with pretrained options. Pretraining options also avoids
the necessity to find out which option learned to solve which subgoal.

For simplicity, we chose a model-free and state-free feed-forward agent architecture.
Generally, the choice of the model hierarchy should reflect the goal hierarchy of the RL
problem. In particular, each subgoal should be addressed by exactly one option. The
state-of-the-art PPO algorithm (Schulman et al., 2017) with GAE (Schulman et al., 2015)
will be used but need to be extended to options first.

Hierarchical agents bring a number of additional new metrics that can be exploited for
explanations. They include:

• The option initiation set I and the option choice probabilities returned by πmeta.
Knowing which option is available and invoked in which state reveals information
about which option is used to address which subtask.

• The execution length of options, i.e., the average time between option invocation
and termination. One would anticipate that the option execution length correlates
with the complexity of a subtask.

• The termination probability β: Termination of an option should correlate with
the achievement of the corresponding subgoal. Additionally, options ideally also
terminate in situations where the subgoal achievement is utterly hopeless or the
state is simply out of distribution for what the option is trained for.

• The invocation frequency or the share in the total execution time: Frequently
occurring subtasks obviously are solved by frequently invoked options, given that
options do not terminate unnecessarily before achieving the targeted subtask.

• Finally, the overall behavior of the option and the action probability distribution
of the intra-option policy. Qualitative analysis of the trajectories rolled out by an
option can disclose further insight into the purpose of the respective option.

Methodologically, the following roadmap will guide the investigation. First, we learn
three baselines: a NUDGE flat, a neural flat, and a neural hierarchy baseline model on a
selected environment. The logic version might perform worse than the neural ones due to
the limited expressiveness of FOL rules.
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Second, on the same environment, we learn a hierarchical model with a logic meta
policy and compare it with the flat logic version in terms of the number of FOL rules and
the number of atoms contained in the rules. We will also compare the performance in
terms of average return. Since it is not guaranteed that the options indeed will learn
to solve the desired subtasks, there is danger that the option predicates won’t mach the
intended option semantics, invalidating the interpretability of the entire logic meta policy.
Therefore, additionally, the aforementioned training and comparisons will be conducted
with pre-trained options.

3.2. Combining PPO with the Option-Critic

First, we need to redefine the state-value and action-value functions and extend them to
options. Here, we follow Sutton et al. (1999) and Bacon et al. (2016) but with adjusted
notation.

Definition 3.2.1 (Value functions in context of ω). Let ω̂ → ω̄ be two options where
option ω̄ chooses over options Ω̌.

(1) The state-value function in the context of ω̄ is the function V ω̄ : S → R defined as

V ω̄(s) :=
∑︂
ω̌∈Ω̌

πω̄(ω̌ | s)Qω̄(s, ω̌).

(2) The option-value function in the context of ω̄ is the function Qω̄ : S × Ω̌→ R defined
as

Qω̄(s, ω̌) := r(s, ω̌) + γ
∑︂
s′

P (s′ | s, ω̌)U ω̂(ω̄, s′).

(3) The option-value function upon arrival in the context of ω̄ is the functionU ω̄ : Ω̂×S →
R defined as

U ω̄(ω̂, s′) := βω̄(s
′)V ω̂(s′) +

(︁
1− βω̄(s

′)
)︁
V ω̄(s′).

The new definition of the state-value function is analogous to the native state-value
function Vπω̄(s). Qω̄(s, ω̌) is the value of executing ω̌ in state s in context of ω̄. U ω̄(ω̂, s′)
reflects the value of executing ω̄ upon entering the state s′. We can canonically extend
the value function definitions to
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Definition 3.2.2 (Advantage in context of ω). Let again ω̂ → ω̄ → ω̌. The advantage
Â

ω̂
(ω̌t, st) of option ω̌t in state st is called the advantage in context of ω̄ and is defined as

Â
ω̄
(ω̌t, st) := Qω̄(st, ω̌t)− V ω̄(st).

Furthermore, we write

A(ω̄, st) := V ω̄(st)− V ω̂(st)

for the continuation advantage of ω.

The option-critic (Bacon et al., 2016) is an extension of the actor-critic framework, cf.
Figure 3.1. It is the first end-to-end HRL architecture, also with the first proven policy
gradient theorem for options.

Agent

Actor

Critic

Environment

πmeta

S

R

ωi

Aω3ω2ω1

Figure 3.1.: The option-critic architecture. It is an extension of the actor-critic, cf. Figure
2.2. The meta policy πmeta selects an option ωi which is executed until termi-
nation. The critic submits feedback to the meta policy and do the currently
active option. Figure inspired by Bacon et al., 2016.
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Options update their policy and their termination function only with transitions where
they were active. Let ω be an option and θ := (θπ, θβ) the parameters of its policy π and
termination function β. The loss function applied by Bacon et al. for option training is

LOPTION(θ) := −Êt

[︂
logπω,θ(at, st)Â

ω
t

]︂
⏞ ⏟⏟ ⏞

policy loss

+ Êt

[︂
βω,θ(st+1) · (Ât+1 + ξ)

]︂
⏞ ⏟⏟ ⏞

terminator loss

,

where ξ is the termination regularizer, used to adjust the general execution duration of
options. Ât the advantage of ω in the higher-level context estimated by Vω(st+1).

This work proposes the following option-specific loss function to be used with PPO in
place of LOPTION.

Definition 3.2.3 (PPO loss for options). The loss used for PPO training with options is
defined as

Lπ(θ) := −Êt

[︂
PPO

(︂
ρπt (θ), Â

ω
t

)︂]︂
where ρπt (θ) :=

πω,θ(at, st)

πω,θold(at, st)
,

Lβ(θ) := Êt

[︂
PPO

(︂
ρβt+1(θ), Ât+1 + ξ

)︂]︂
where ρβt (θ) :=

βω,θ(st)

βω,θold(st)
,

and where

PPO(x, y) := min (xy, clip(x, 1− ε, 1 + ε)y) .

This proposed loss function is a natural extension of the PPO loss to both the intra-option
policy and the termination function.

3.3. Generalized Advantage Estimation for Options

This work also proposes to use an option-specific Generalized Advantage Estimator (GAE),
called Generalized Advantage Estimator for Options (GAEO). The experiments, however,
revealed that the usage of GAE was counterproductive.

Let τ = (s1, (ω
L−1
1 , ..., ω1

1, a1), r1, s2, ..., rT−1, sT ) be a trajectory from the agent’s experi-
ence. For simpler notation, we write V ω

t := V ω(st), analogously Qω
t := Qωt(st, ω̂t), and

Uω
t := Uωt(ω̂t, st), where ω̂t → ωt.

Recall that δt denotes the TD(0) error at time step t (see also Section 2.1.2).
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Definition 3.3.1 (n-step advantage). Let

δt := rt + γVt+1 − Vt

denote the TD(0) error. The n-step advantage is defined as

Â
(n)
t :=

n−1∑︂
k=0

γkδt+k.

The n-step advantage is a collection of several different advantage estimators: The 1-
step advantage is equal to the TD(0) error δt which has low variance but high bias.
The counterpart is the Monte-Carlo advantage estimate which is the∞-step advantage
Â

(∞)
t =

∑︁∞
k=0 γ

krt+k. It is the discounted return and does not include any other estimators,
hence, has low bias but high variance.

In order to balance bias and variance, this work tests the Generalized Advantage Estimator
by Schulman et al. (2015):

Definition 3.3.2 (GAE). For 0 ≤ λ ≤ 1, the Generalized Advantage Estimator (GAE) is

Â
GAE
t := (1− λ) ·

(︂
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + ...

)︂
=

∞∑︂
k=0

(γλ)kδt+k.

In words, the GAE is a geometric sum of all (available) n-step advantages. The weighting
with (γλ)k reflects a compromise in the bias-variance trade-off between the high-variance
Monte-Carlo return estimate and the high-bias 1-step advantage.

In the options framework, we need to further specify the GAE computation for two reasons:
First, options can terminate at any point of time in the episode, forbidding to use n-step
advantages that reach beyond option termination. Second, any policy on level 2 or higher
does not always make a decision because it needs to wait until the lower-level option has
terminated.

This work addresses the aforementioned situations by proposing
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Definition 3.3.3 (GAEO). Let τ := (s1, ω1, r1, s2, ..., r1−T , st) be a trajectory in the option-
induced SMDP. For 0 ≤ λ ≤ 1, the Generalized Advantage Estimator for Options (GAEO)
is

Â
GAEO
t :=

∞∑︂
k=0

(γλ)kδωt+k,

where

δωt := rt + γUω
t+1 − V ω

t

is the option-specific TD(0) error.

Changes to the GAE are highlighted in blue. In a nutshell, the GAEO is the GAE over the
option-induced SMDP where, for all options ω, their value estimates V ω

t are replaced by
the value upon arrival Uω

t . Moreover, termination is handled with bootstrapping using
Uω
t , too. Note that t does not refer to actual time steps as in the original MDP (where

transitions are done by actions) but rather to an ”abstracted” time step in the higher-level
SMDP. In particular, rt refers here to the sum of rewards gathered during execution of the
respective lower-level option. Moreover, each level in the options hierarchy has its own
GAEO estimate whereas the estimate for πmeta remains the GAE.

The inclusion of Uω
t in the GAEO adheres the fact that an option can terminate at any

(SMDP) time step. However, the usage of Uω
t also has its pitfalls, as the experiments show.

For a detailed discussion please refer to the Appendix A.1.

3.4. The Options Training Algorithm

Overall, the training algorithm applied in this work is a modification of the state-of-the art
PPO algorithm by Schulman et al. (2017). Algorithm 1 summarizes the training process
from a global point of view. The model gathers on-policy experience by rolling out a
trajectory in the environment for a fixed number of steps nrollout. Here, the model acts non-
deterministically by random choice according to the probabilities returned by πω and πmeta,
respectively. After rollout, the algorithm computes the GAEO for all experienced time steps
using Equation A.1. Next, πmeta trains on experience D following the PPO algorithm. After
πmeta, the algorithm traverses the option hierarchy and trains each option individually
following a proposed, option-specific modification of the PPO algorithm for both, the
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option-critic (Algorithm 2) and the terminator (Algorithm 3). The overall sequence—
gathering rollouts, computing GAEOs, and training—repeats for ntotal iterations (or until
convergence).

Algorithm 1: Option Hierarchy Training
Input :Hierarchy H = (Ω0, ...,ΩL−1) with meta policy πmeta, total time steps ntotal,

time steps between updates nrollout, maximum episode length nmaxlen
Output :Trained hierarchy H′

for iteration 1, 2, ..., ntotal do
for rollout step 1, 2, ..., nrollout do

Perform environment action
Add observed transition to experience D
Reset environment if goal achieved or number of steps reached nmaxlen

Compute GAEO ât for all time steps t
Train meta policy πmeta with PPO see Schulman et al. (2017)
for each hierarchy level 1 ≤ l < L do

for each option ω ∈ Ωl do
Train inter-option policy πω with PPO see Algorithm 2
Train terminator βω with PPO see Algorithm 3

return trained hierarchyH′

Algorithm 2 depicts the PPO-based training process for the option-critic of an option ω.
It applies stochastic gradient descent with batches Dω

batch of size b for nepochs repetitions.
Here, Dω

batch is a set of those augmented SMDP transitions that occurred right after ω took
a decision. Optionally, the GAEOs can be normalized to have zero mean and standard
deviation of 1. Unlike ε-greedy where exploration is controlled via ε, here the entropy
coefficient centropy trades off between exploration and exploitation. A higher coefficient
increases the impact of the entropy S(πθ′) in the overall loss, enforcing πθ′ to balance
probabilities among the options. The overall loss also includes the value loss

LVF(θ′) :=
1

b

∑︂
st∈Dbatch

(V ω
θ′ (st)− gt)

2 ,

which is the mean squared error between the parameterized critic Vθ′ and the update
target gt, here the discounted return at time step t. The value coefficient cvalue controls
the overall loss share of the value loss and is used to even out actor and critic loss for
uniform training progress.
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Algorithm 2: Option-Critic PPO
Input : Intra-option policy πθ of option ω with parameters θ deciding over options

ω̌ ∈ Ω̌, number of epochs nepochs, rollout data D, batch size b, value
coefficient cvalue, entropy coefficient centropy

Output :πθ′ trained on D
θ′ ← θ
for epoch 1, 2, ..., nepochs do

for each batch Dω
batch ⊆ D of size b do

Compute ratio ρπt =
πθ′ (at|st)
πθ(ω̌t|st) for each option-state pair ω̌t, st ∈ Dω

batch Actor

Optionally, normalize all ÂGAEO
t in Dbatch

Update θ′ by gradient descent step
∇θ′

(︁
LPPO(θ′) + cvalueL

VF(θ′) + centropyS(πθ′)
)︁

return πθ′

Finally, Algorithm 3 applies PPO to the terminator. It is analogous to the option-critic PPO
except for two differences: There is no critic that needs to be trained and a termination
regularizer ξ, as suggested by Bacon et al. (2016), can be used to influence the execution
length of options. More precisely, increasing ξ leads to longer options because ξ adds
artificial advantage, suggesting higher value in the option’s execution, i.e., lower loss in
terminating it.

3.5. Expectations and Final Theoretical Remarks

The hope is that ω-NUDGE is better interpretable than NUDGE. This section elaborates
further theoretical consequences of combining NUDGE with options.

The options training algorithm (Algorithm 1) trains the meta policy and all options
concurrently. From the viewpoint of the meta policy, the available action (option) space
changes during training. It’s like a train driver who learns to drive a train, but the effect
of all the buttons and knobs changes over time. Accordingly, training with simultaneous
option updates is expected to become difficult. There are at least two remedies for this
issue: First, the option training can be ”cooled” down early by reducing the learning rate
or the PPO clip factor only for options. In essence, the options converge to a solution and
the meta policy receives enough extra time to get used to the options. Second, one could
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Algorithm 3: Terminator PPO
Input :Termination function βθ of option ω with parameters θ, number of epochs

nepochs, rollout data D, batch size b, termination regularizer ξ
Output :βθ′ trained on D
θ′ ← θ
for epoch 1, 2, ..., nepochs do

for each batch Dω
batch ⊆ D of size b do

Compute ratio ρβt (θ
′) =

βθ′ (st)
βθ(st)

for each state st ∈ Dω
batch

Optionally, normalize all Ât in Dbatch

Update θ′ by gradient descent step ∇θ′PPO
(︂
ρβt (θ

′),−(Ât + ξ)
)︂

return βθ′

separate the learning of all involved policies through curriculum learning. That is, each
option individually learns to solve a simple subtask, as proposed above. Afterwards, the
meta policy learns to solve the RL task by using the fixed, pre-trained options. The latter
solution requires the environment together with the reward function to be modifiable.

Logic policies like NUDGE don’t apply readily to environments that have a continuous
action space. Options can have any arbitrary architecture and, thus, can deal with any form
of action space. Moreover, the meta policy’s choice over options is always discrete. Thus,
options can also be seen as a translation from discrete actions to continuous (sequences
of) actions, enabling the usage of logic policies for continuous action domains.

In NUDGE, a domain expert provides a priori knowledge in form of predicates that encode
the observation and FOL rules for choosing actions. When combining NUDGE with options,
the domain expert now is required to provide FOL rules for options instead of actions. If the
options are not pre-trained, the expert needs to anticipate which option is going to solve
which subtask, seemingly impossible. Fortunately, through the provision of FOL rules, the
expert can influence the future development of the options: Since FOL rules determine
under which conditions a certain option is taken the expert can, to some extent, define the
initiation set I for each option. Options that are invoked in only specific, similar situations
are going to specialize on these situations and learn to adequately react. Since the options
mostly see the situations they are trained for, they perform bad on out-of-distribution MDP
regions, giving an incentive for the meta policy to remain the option invocations at the
states implied by the FOL rules. In order to avoid suboptimal results due to exaggerated
restriction, the expert can add ”backup” options to the hierarchy that underlie no specific

31



prior and can evolve freely.

Where NUDGE fails, ω-NUDGE might be successful. Especially in real-world problems
where state and action space typically have large dimensions, the restriction of a policy to
FOL rules could be too limiting in order to find a satisfying policy. The ML practitioner
can choose especially flexible architectures like deep NNs that deliver the required expres-
siveness to solve sub-problems where interpretability isn’t as crucial as on higher levels. In
other words, by choosing the hierarchy and the option architecture, the ML practitioner
can trade-off between interpretability and flexibility.

Finally, as usual with options (Bacon et al., 2016), ω-NUDGE is expected to perform better
and learn faster than NUDGE
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4. Experiments and Results

This work introduces a novel environment: the MeetingRoom environment, explicitly
designed for hierarchical agents. It is a simple environment exhibiting opportunities for
abstraction. However, it is not comparable with real-world applications as the latter are
much more complicated. The experiments on MeetingRoom should be considered as a
proof of concept.

The interested reader finds the implementation details and a brief documentation in the
Appendix A.3.

4.1. Introducing the MEETINGROOM Environment

FOURROOMS

A popular environment (Hutsebaut-Buysse et al.,
2022) used for HRL benchmarking is the FOUR-
ROOMS environment by Sutton et al. (1999). Four-
Rooms is a grid world of four rooms connected via
doorways, see the figure on the right. The agent
starts from a random position and is tasked to navi-
gate to a random target position. The four doorways
are key positions because moving from one room
to another requires the agent to move through the
doorway. Sutton et al. (1999) defined options that
move the agent to one of the doorways. The au-
thors showed that fewer iterations were needed to
learn the optimal value function. FourRooms is
only useful for 2-level hierarchies because there is
no possibility to further abstract beyond doorways.
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Figure 4.1.: The MEETINGROOM environment explained. Dark fields represent walls which
can’t be passed by the agent. The campus map on the bottom indicates in
which building and which floor the agent currently is. In this example, the
agent is on the ground floor of the third building.

Therefore, this work proposes an extension of the FourRooms environment. Two new
dimensions are added to the grid world: floors and buildings. The agent can switch floors
via an elevator. Moreover, each building has an entrance at the ground floor used to switch
buildings. The four move actions north, east, south, and west are extended by the
actions next and previous utilized to switch floors (when in an elevator) or buildings
(when at an entrance). The task can be compared with the problem of navigating to a
meeting room somewhere on a large corporate campus. Therefore, this environment is
referred to as the MEETINGROOM environment. See Figure 4.1 for a visualization of the
environment.
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Figure 4.2.: Exemplary trajectory in the MEETINGROOM environment. Since the target is in
a different building, the Agent first needs to take the elevator to get to the
ground floor before moving to the target’s building. After reaching the target
building, it can take the other elevator to the target’s floor.

The observation returned by the environment is a vector consisting of

• the agent’s relative position to the target and to the elevator as well as the entrance
of the current building

• the number of the current floor

• a flattened 7× 7 Boolean-encoded view of the locally surrounding walls

MeetingRoom is designed to offer a multi-level goal hierarchy. In the most general case,
the target is in a different building than the agent. Consequently, the agent not only
needs to find the target’s room but also the target’s floor and building, navigating through
entrances and elevators. The latter two induce access states which the agent must pass
before reaching the target, affording opportunities for temporal abstraction. Figure 4.2
displays an exemplary trajectory.

Note that, just like in FourRooms, each floor is divided into four rooms. The floor plan,
however, is randomly generated for each floor and for each new episode. Re-generation
prevents the agent from overfitting to one single floor by simply rote-learning the direct
path to the target. Instead, the agent is forced to generalize to any floor plan, incentivizing
policies that take not only the agent’s current position into account but also the local
surroundings.
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4.2. Experimental Setup

This work evaluates ω-NUDGE on MeetingRoom with one building and four floors and
a floor size of 11× 11. Multiple buildings turned out to be surprisingly difficult to learn
and, thus, remain for future work. In the setting with one building, a two-level hierarchy
with three options is evident: One option for targeting the elevator, one option for the
star an one option for—when inside the elevator—moving to the target floor.

Two of the three neural options of ω-NUDGE are pretrained: The first to navigate to the
star, the second to navigate to the elevator. The third option, which is for floor switching
if already inside an elevator, was not pretrained as it is expected that this simple task will
be learned easily by the agent.

For the sake of simplicity, we choose the initiation set I := S to be the entire state space,
i.e., each option is available to its higher-level policy everywhere. A human expert provides
the FOL rules as well as action (flat) and option (hierarchical) predicates to choose from.

In all experiments, episodes are truncated at 100 steps to limit evaluation time. Rewards
and advantages are normalized while observations are normalized only for neural policies
(logic policies receive a symbolic state representation where normalization doesn’t make
sense).

The neural policies use two layers of dense NNs for all three, actors, critics, and terminators.
Except for the neural flat baseline, which has 64 neurons per layer, each neural option
policy has a small dense layer width of 16 units, enforcing specialization and avoiding
option mode collapse.

To accelerate learning, the reward function not only returns +1 for reaching the goal
but it also awards movement towards the goal with a small signal while penalizing the
opposite.

The most important hyperparameters can be found in Table 4.1. The learning rate uses an
exponential decay with half-life period of 25% of the total training time if the policy is a
meta policy, 10% otherwise, i.e., options slow down learning early to allow the meta policy
to adjust. For a full specification including used seeds etc., please refer to the experiment
configuration files saved in the GitHub repository, linked in Appendix A.3.

Note that no systematic hyperparameter search was conducted, implying that there might
be room for improvement for any of the used models. In particular, these experiments do
not claim to be fully representative but rather serve as indication.
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Hyperparameter Value
Neural Logic

Total steps nsteps 107

Steps nrollout between updates 512
Number of epochs nepochs 6

Batch size b 256
Maximum episode length nmaxlen 100

Optimizer Adam
Learning rate 0.002 0.001

Value coefficient cvalue 0.05 0.0025
Entropy coefficient centropy 0.1 0.00001

Discount factor γ 0.9
GAE(O) λ 0 0

Termination entropy coefficient centropy 0.1 n.a.
Termination regularizer ξ -0.2 n.a.

Table 4.1.: The hyperparameters used for training the neural and the logic policies on
MEETINGROOM, respectively. See Algorithm 1 for the usage of the parameters.

Furthermore, the FOL rules provided to the logic policies are listed in Figures 4.3 and 4.4.
Each rule is structured following the scheme consequence :- requirements where
the consequence is the action (predicate) and requirements are a conjunction of atomic
facts. If all requirements of a rule are fulfilled, the corresponding action is more likely to
be selected.

4.3. Results

Experiments were run for ω-NUDGE, NUDGE and two neural baselines: a flat and a
hierarchical one. The results are depicted in Figure 4.5. The following sections are going
to interpret and elaborate the results.
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north(X) :- north_free(X).
east(X) :- east_free(X).
south(X) :- south_free(X).
west(X) :- west_free(X).
north_to_target(X) :- south_of_target(X).
east_to_target(X) :- west_of_target(X).
south_to_target(X) :- north_of_target(X).
west_to_target(X) :- east_of_target(X).
north_to_elevator(X) :- not_on_target_floor(X), south_of_elevator(X).
east_to_elevator(X) :- not_on_target_floor(X), west_of_elevator(X).
south_to_elevator(X) :- not_on_target_floor(X), north_of_elevator(X).
west_to_elevator(X) :- not_on_target_floor(X), east_of_elevator(X).
next_upper_floor_to_target(X) :- in_elevator(X), below_target(X).
prev_lower_floor_to_target(X) :- in_elevator(X), above_target(X).
north_bypass_wall(X) :- wall_west(X), east_of_target(X).
north_bypass_wall(X) :- wall_east(X), west_of_target(X).
south_bypass_wall(X) :- wall_west(X), east_of_target(X).
south_bypass_wall(X) :- wall_east(X), west_of_target(X).
east_bypass_wall(X) :- wall_north(X), south_of_target(X).
east_bypass_wall(X) :- wall_south(X), north_of_target(X).
west_bypass_wall(X) :- wall_north(X), south_of_target(X).
west_bypass_wall(X) :- wall_south(X), north_of_target(X).

Figure 4.3.: The FOL rule set used for NUDGE.

opt0_to_target(X) :- on_target_floor(X).
opt1_to_elevator(X) :- below_target(X).
opt1_to_elevator(X) :- above_target(X).
opt2_switch_floor(X) :- in_elevator(X), not_on_target_floor(X).

Figure 4.4.: The FOL rule set used for ω-NUDGE. optX identifies the target option to
choose.
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Figure 4.5.: The training results for ω-NUDGE, NUDGE, a neural flat and a neural hierarchi-
cal baseline. Highlighted areas show the 90% confidence interval.
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4.3.1. ω-NUDGE Performs Better than NUDGE

The most important observation from the results in Figure 4.5 is the striking performance
of ω-NUDGE: First, it developed a decent overall performance very quickly and, second,
outperforms NUDGE by far. Arguably, the twomain reasons for the comparably outstanding
performance are (1) the fact that ω-NUDGE had access to pretrained policies that already
know how to solve the environment partially and (2) that the pretrained policies are
neural, i.e., have good fitting capabilities. The training curve for ω-NUDGE without
pretraining supports both arguments: First, ω-NUDGE with pre-training reaches its long-
term performance very early whereas ω-NUDGE without pretraining needs more time to
reach the same performance. Second, ω-NUDGE without pretraining performs better than
NUDGE, indication for the strength of NNs.

Furthermore, NUDGE was originally tested on low-dimensional environments like GetOut
where, on just a single dimension, the agent has to collect a key in order to open a door
while evading enemies. (Delfosse et al., 2023b) In contrast, MeetingRoom has three
dimensions (if recognizing the elevator as the gate to the third dimension), yielding six
different actions, making MeetingRoom policies more complex to be represented in terms
of rules.

4.3.2. ω-NUDGE Has Better High-Level Interpretability than NUDGE

ω-NUDGE has a far smaller rule set than NUDGE cf. Figures 4.3 and 4.4. More precisely,
NUDGE has 22 rules while ω-NUDGE has only 4 rules, clearly showing a significantly
improved high-level interpretability. Yet, ω-NUDGE is able to beat NUDGE by far in terms
of performance.

Moreover, the perception of complex structures like walls is problematic for logic policies.
Logic rules require a logic state representation. However, representing walls in terms of
rule sets is a non-trivial task since walls can have arbitrary shape. One could model each
single field in the local 7×7 view of the agent as an object that is either a wall or an empty
field. This, however, would lead to 7 · 7 = 49 different predicates only for perceiving the
local surroundings. As a consequence, learned rule sets would become inscrutably large,
much larger than the one presented in Figure 4.3.

Options allow the logic meta policy to abstract away the walls and concentrate on the
higher-level strategy: going to the elevator when on the wrong floor, going to the star
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when on the right floor. Neural options then use their capable perception of the gridworld
to actually navigate to the current subgoal.

4.3.3. Even Without Pretraining ω-NUDGE Learns Faster than Neural
Hierarchies

Consulting the learning curves in Figure 4.5 of ω-NUDGE without pretraining versus
the neural hierarchy, the former clearly learns the problem faster than the latter. This
outcome is exceptionally remarkable because the only difference between these two agents
is that ω-NUDGE incorporates only 4 high-level rules. In other words, even though all sub-
policies are randomly initialized, providing just a few high-level rules accelerates training
strongly. One could even argue that using a neural meta policy has no performance
benefits over a logic meta policy here. This conjecture, however, would need further
empirical investigation.

The likely reason for the faster learning progress by ω-NUDGE is that the FOL rules
incentivize an early development of the options to the desired subtask specialization. As
we will see in the next subsection, the options indeed learned the subtasks as intended.
However, note that, due to their expressiveness, the neural baselines both have a better
long-term performance (omitted in the figure) than ω-NUDGE.

4.3.4. ω-NUDGE Finds More Meaningful Options than Neural Hierarchies

Figure 4.6 shows additional evaluation results regarding the option selection probabilities
depending on the state. For ω-NUDGE, indeed, the probabilities match the expectations
one would have when considering the option names. The heatmaps also show that option
activation is uniform for the entire respective floor, except for the elevator which is reserved
for option ω2 for switching the floor. In contrast, the heatmaps for the neural hierarchy
are much less meaningful. Not only that: Option 2 is used for both, going to the elevator
and going to the target. Hence, the neural hierarchy didn’t even split up the task into
subgoals but, instead, let one single option do the job.
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Figure 4.6.: Option selection probabilities visualized as heatmaps. Strong color indicates
high probability that the corresponding option is chosen by πmeta when the
agent is on that field. The rightmost column shows the history of chosen
options, i.e., subgoals. The building pictograms on the left show the current
floor level.
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Generally, even if the neural hierarchy had learned meaningful options, the option seman-
tics are unknown until after training where a human investigator needs to analyze the
options and identify the corresponding subtask. This task of option labeling becomes the
harder the more diffuse the action probability heatmaps are.

Figure 4.7 shows the activity share of each option w.r.t. the total execution time. Surpris-
ingly, for ω-NUDGE, ω0 (going to the target) is invoked much more often than ω1 (going
to the elevator). One would expect both activity shares to be roughly equal (ω0 with a
slightly larger share since there is a chance of 1/4 that the agent starts from the target
floor). This expectation is matched well by ω-NUDGE without pretraining. In other words,
using pre-trained options lead to an overestimation of ω0, maybe because it is the option
which safely reaches the goal. This observation needs further investigation.
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Figure 4.7.: The activity shares of the three options for all three hierarchical models.

4.3.5. Termination Function Training is Difficult

When running the experiments, it turned out to be difficult to achieve a satisfying option
execution length: Typically, option execution falls too short, i.e., the learned terminators
are too restrictive, see also Figure 4.8 as well as Figure A.1 in the appendix. More effort
in exploring a suitable terminator regularizer ξ and a terminator entropy coefficient is
required.

A hypothetical reason for the short execution length could be that πmeta has too high
entropy. That is, πmeta invokes the options too often on out-of-distribution data leading
to a bad overall performance of the agent, incentivizing the termination function to let
options terminate early so that πmeta can correct its decision.
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Figure 4.8.: The execution lengths of the three options for all three hierarchical models.

4.4. Side Contributions

In preparation for the upcoming experiments on OCAtari with SCoBots, a Graphical User
Interface (GUI) was implemented to support the manual RAM information extraction for
Atari games. The tool is called RAM Extraction Method GUI (REM GUI). It enables the user
to interactively explore the RAM of the Atari game state and find correlations between
objects and RAM entries. See Appendix A.4 for a screenshot and a brief documentation.
Using this tool, the RAM extraction method for the games Pong, Seaquest, and Kangaroo
was fully reworked, fixing any incorrect object detection and completing the detection by
previously missed objects.

Additionally, an interface for aggregation functions in SCoBots was implemented. Aggre-
gation functions enable the user to add, for example, total object counts, to the concept
bottleneck. Experiments on Pong, Seaquest, and Kangaroo showed that normalizing
the concept bottleneck values is vital to the learning success of the agent. Furthermore,
it was found that there are use cases like in Seaquest where freezing the properties of
disappeared objects is detrimental to the agent’s learned behavior. Instead, setting the
properties of invisible objects to zero turned out to produce better results on Seaquest.
Therefore, the ability to perform observation normalization and deactivate object freezes
was implemented. All the aforementioned improvements enabled the successful training of
flat neural agents that achieve remarkable performance on both, Kangaroo and Seaquest,
used as results in the SCoBots publication. These agents will serve as a baseline for the
upcoming ω-NUDGE experiments.

Furthermore, an opportunity to increase the training speed of NUDGE was discovered.
Previously, the FOL rules compared predicates against any game object, leading to a
memory complexity of O(nk) where n is the number of constants and k is the maximum
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number of variables that a predicate accepts in the rule set. The number of constants
correlates with the number of game objects. A high number of game objects quickly lead to
GPU out-of-memory errors. As a solution, the feature was introduced to replace variables
with constants wherever applicable. This way, the maximum number k of variables inside
a predicate can be effectively reduced to 1, resulting in a memory complexity linear in the
number of game objects instead of polynomial. Consequently, the out-of-memory errors
vanished and also the training speed of NUDGE increased greatly by a factor of 5 to 10,
depending on the use case.
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5. Related Work

5.1. Hierarchical RL with Logic

The approach most similar to this thesis was published by Araki et al. (2021). The authors
propose the Logical Options Framework (LOF) which combines Linear Temporal Logic
(LTL) (Clarke and Schlingloff, 1996) with options. The resulting model has a hierarchy of
two levels: The meta policy in the upper level is a finite state machine, specified through
LTL. Each option in the lower level solves a subgoal, explicitly specified by the user through
LTL formulae. Araki et al. argue that they are the first who created a framework that, under
certain conditions, learns policies that meet the three properties satisfaction, optimality,
and composability. Satisfaction means that the user-specified LTL rules are all satisfied by
the trained agent, always. Optimality is reached when the agent maximizes the expected
cumulative reward. Optimality can be guaranteed only if observations are complete
and the environment is discrete. Finally, an agent is composable if it is modular and
the modules can be rearranged and reused on new tasks. There are several important
differences between their and this work. First, the meta policy is represented by LTL
formulae that can be converted to a finite state machine. This is different to ω-NUDGE
the meta policy πmeta of which is learned with NUDGE through neural guidance, resulting
in a logic program, consisting of FOL rules. Second, LOF learns each option individually
and independently, requiring a clearly specified subgoal per option. Subgoals are given
a priori by the user through LTL formulae. ω-NUDGE can also be used to automatically
discover subgoals. Third, an LOF option terminates if and only if it reaches the subgoal. In
particular, the termination function is given and not learned as in ω-NUDGE. Fourth, LOF is
defined only for two-level hierarchy models whereas ω-NUDGE (and the implementation)
support arbitrarily many levels. Finally, and the most crucial difference, LOF was primarily
introduced with the intention to meet the three aforementioned model properties. The
focus of LOF was not to improve model interpretability or explainability nor was it
evaluated regarding these properties. The restriction of LOF to a two-level hierarchy
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limits the ability of temporal abstraction significantly at the cost of interpretability for RL
problems that have goal hierarchies larger than two levels.

Later, the same authors propose Hierarchical Inference with Logical Options (HILO) to
learn a hierarchical model through expert imitation. (Araki et al., 2022) Similar to above,
LTL subgoals are provided by the user as LTL formulae and readily-trained options are
given. Additionally, a set of expert trajectories is given as input to HILO which then learns
a distribution over LTL formulae, inducing a distribution over policies that best imitates
the expert.

Xu and Fekri (2021) present a hierarchy model with a neural high-level agent, a neural
subtask solver, and a logic-based transition model. The high-level agent selects subgoals
and submits them to the subtask solver. The transition model learns via inductive logic
programming the rules to model the MDP transition function. In contrast, ω-NUDGE has
a logic meta policy and forgoes any transition model.

5.2. Symbolic Planning with Hierarchies

A series of publications combines classical planning techniques with HRL. (Jin et al., 2022;
Lyu et al., 2018; Illanes et al., 2019; Illanes et al., 2020; Achterhold et al., 2022; Konidaris,
2019; Prakash et al., 2022) They follow a similar principle: From a symbolic state repre-
sentation, a high-level planner generates a symbolic action plan, i.e., a series of subgoals,
which is then executed by lower level policies. Planning is applied in environments where
the transition function is known. ω-NUDGE does not rely on that assumption and can be
applied also to environments with unknown dynamics.

One of the most interesting works in the symbolic planning HRL domain comes from
Lyu et al. (2018). They use a meta controller that defines goals for the sub-policies: It
modifies the reward signal to align with a new, ”intrinsic” goal the respective sub-policy
is supposed to reach. The meta controller also evaluates them. For planning, they use
special action description language. The most critical drawback is that their model is not
composable. (Araki et al., 2021) ω-NUDGE supports composability inherently due to the
modularity of options.

Another noteworthy symbolic planning framework was introduced by Illanes et al. (2019)
and Illanes et al. (2020) that incorporates action models that do both, symbolic state
and temporal abstraction. They propose to explicitly not communicate subgoals to the
lower-level policies but instead high-level plans that guide the subgoals. Rewards are
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generated via reward machines which are finite-state machines that specify temporally
extended reward signals. Moreover, terminators are pre-defined unlike in ω-NUDGE. In
particular, also their framework is not composable. (Araki et al., 2021)

5.3. Interpretable Neural HRL

Interpretable HRL methods seek for goal-based interpretability, i.e., where explanations
for actions don’t rely on input features but on the currently pursued subgoal, depending on
the meta policy’s choice. Several such neural frameworks were proposed. (Shu et al., 2017;
Bonaert et al., 2021; Munoz et al., 2022; Rietz et al., 2022) Since the models are neural,
in particular not intrinsically explainable, sometimes some extra post-hoc explanation
methods are applied. As an instance, Beyret et al. (2019) explain their model simply
via Q-values drawn from the (single and only) sub-policy w.r.t. a given subgoal. Another
example is the work of Munoz et al. (2022) who propose a memory-based explanation
method which uses statistics from the agent’s past experience to infer success probabilities
of subgoals and, hence, justify the agent’s behavior. Other work even introduced the ability
for the meta policy to decide when to learn and add a new sub-policy. (Shu et al., 2017)
Finally, Rietz et al. (2022) are the first to combine HRL subgoal context with one-step
explanations. That is, they don’t use the mere current subgoal as an explanation but
rather as an additional context for one-step explanations. They couple it with reward
decomposition.
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6. Discussion

Overall, the experiments confirmed the expectation that the interpretability of NUDGE can
be improved via options. Additionally, also the performance was successfully increased.
Nevertheless, ω-NUDGE also has its disadvantages, more discussed in this chapter. Future
directions including will be pointed out, followed by a short ethical assessment.

6.1. ω-NUDGE versus NUDGE versus Neural Hierarchies

In contrast to NUDGE which uses a neural model to only guide the learning of the
symbolic policy, ω-NUDGE combines a symbolic policy with neural sub-policies and can
be, therefore, considered as a neuro-symbolic AI (Sarker et al., 2021). As other neuro-
symbolic AI models, NUDGE and ω-NUDGE want to combine the advantages of both
neural and symbolic approaches. ω-NUDGE uses neural components to a higher degree
than NUDGE. Naturally, a better flexibility of ω-NUDGE was observed. In fact, ω-NUDGE
decouples flexibility from high-level interpretability, loosening the trade-off between
interpretability and flexibility. Of course, low-level interpretability remains a limiting
factor for the overall interpretability of ω-NUDGE. Fortunately, typically, we are more
interested in the high-level behavior of an agent rather than its fine-grained, one-step
tactics.

Generally, pre-training should be used whenever possible. Due to its composability, ω-
NUDGE allows to integrate readily trained sub-policies or even specific algorithms like, for
example, path finding solutions. This is not possible with NUDGE alone due to its atomic
nature.

HRL practitioners demonstrated that HRL models are capable to overcome the credit
assignment problem in long-horizon, sparse-reward tasks and to improve exploration.
Although not tested on these criteria, the scientific evidence gives good reason to expect
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that ω-NUDGE can cope with such problems since ω-NUDGE takes full advantage of the
HRL paradigm.

One more important drawback of NUDGE solved by ω-NUDGE is the missing applicability
of NUDGE to environments with continuous action spaces. ω-NUDGE can use any arbitrary,
even a heterogeneous choice of architectures as options. In particular, ω-NUDGE applies
to any kind of action space as long as there exists any model architecture that can deal
with it. In this context, options can be seen as a means to transform a continuous action
space into a discrete one for the logic meta policy.

NUDGE and ω-NUDGE both allow the ML expert to include prior knowledge into the
(meta) policy. This is a crucial advantage that neural hierarchy models do not have. As
seen in the experiments, such prior knowledge accelerates learning progress and increases
the chances to get meaningful options. In fact it was proven that the automatic discovery
of subgoals for a limited number of time steps is NP-hard. (Jinnai et al., 2018) With
ω-NUDGE the user can evade the difficulty of automatically discovering subgoals by
providing proper rules that drive the options to quickly learn the subgoals.

Arguably, higher-level concepts are more easily encodeable into logic state representations
than direct, environmental perceptions. This might be an additional, decisive factor why
high-level logic policies have great chances to be much smaller than flat logic policies.

A summary of the discussed advantages and disadvantages can be found in Table 6.1.

NUDGE ω-NUDGE Neural hierarchy

High-level interpretability 3 33 -
Low-level interpretability 3 - 7

Flexibility - 3 3

Composable - 3 3

Low sample complexity - 7 7

Suited for sparse-reward problems 7 3 3

Accepts continuous action space 7 3 3

Takes prior knowledge (through FOL) 3 3 7

Training stability 3 - -

Table 6.1.: Summarized comparison between the original NUDGE, the proposedω-NUDGE,
and a purely neural hierarchy.
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We conclude this section with discussing the following question: Does the core idea of
NUDGE get invalidated when learning it jointly with untrained neural options? The
idea is that a neural model guides the differential logic training process without actually
performing actions. This principle still applies in ω-NUDGE even when the lower-level
policies are neural—the NUDGE principle is only applied on higher, temporally abstracted
layer. It is irrelevant what kind of architecture is used in the lower-level options as they
do not actively interfere with the NUDGE learning process. The only difference is that
the NUDGE meta policy has an action space consisting of options rather than the actual
environment action. However, since the effect of the options can change at training time
when learned jointly, NUDGE needs to adapt to the change, likely increasing training
time—but not fundamentally undermining NUDGE’s core idea.

6.2. Limitations

Of course, ω-NUDGE also has flaws, some of which are inherent and others which can be
addressed through future work. The probably biggest issue of ω-NUDGE is an overall lack
of training stability: The most crucial failure case is the option collapse mode where a
single or only a few options solve the entire RL problem. In this case, one option can pursue
a large number of different subgoals. There is no possibility anymore to differentiate
between the subgoals and the meta policy becomes redundant. Another factor in the
model training stability are the termination functions which are not guaranteed to learn
reasonable termination probabilities. Although this can be influenced by the termination
regularizer, increasing this hyperparameter lead to extremely long option executions. The
effect of this hyperparameter is strong and needs further investigation. Generally, the
dimension of the hyperparameter space is huge since, in theory, the meta policy and each
option can all have individual hyperparameters. Consequently, hyperparameter search
is costly to conduct. At least, the user can cope with this situation by using pretrained
options.

One other drawback of ω-NUDGE is that it only accepts a discrete option space. How-
ever, the nature of real-world problems is typically continuous and high-dimensional.
(Hutsebaut-Buysse et al., 2022) Also subgoals can be continuous, think of shooting a
football at a goal which requires the specification of kick angle and intensity. Learning
parameterized options is an open field of research, but some solutions exist. (Silva et al.,
2012)
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Furthermore, option training inevitably requires more computational resources. Multiple
policies need to be trained at once. Due to the heterogeneous nature of hierarchical models,
the advantages of parallelization cannot be used as efficiently as, e.g., in deep NNs. In the
experiments of this work, flat neural policies were trained with an average throughput of
about 1800 transitions per second whereas neural hierarchical models learned only about
800 samples during the same time period on the same hardware.

The experiments revealed that the option execution time is very short. From amathematical
perspective, short options are suboptimal: Frequent option termination increases the
necessity to bootstrap value functions, introducing more bias. Additionally, short options
are bad for the explainability of the model. More specifically, a user wants to trust the
subgoal provided by the agent, but the communicated subgoal is not trustworthy if can
change right in the next step with high probability. Instead, in order to align with the
user’s expectations, the model should learn to ”commit” to subgoals, i.e., have longer
option execution times. To this end, terminator hyperparameters need to be tuned in
future experiments.

6.3. Future Directions

In this work, ω-NUDGE was only evaluated on MeetingRoom. More experimental
evaluation is needed and will be conducted on other environments, including Seaquest
and Kangaroo. Moreover, the environments ”Montezuma’s Revenge”, ”Pitfall”, and ”Private
Eye” are considered suitable HRL benchmarks (Hutsebaut-Buysse et al., 2022) and should
be, therefore, included as well. To this end, RAM extraction in OCAtari needs to be
prepared for this.

The current ω-NUDGE implementation is sample-inefficient. The main reason is that
policies are only trained on transitions where they actively made a decision. Instead,
in a first step, all policies that are part of the invocation trace can use the experienced
transitions for learning—even if the policy did only wait until the lower-level option is
finished executing. It can be assumed as if the waiting policy had actually chosen the
currently active lower-level option. This would drastically increase the available training
data in cases where options are executed for a long number of transitions. In a second
step, as proposed by Sutton et al. (1999), similar options from the same level that pursue
similar tasks could reuse the same experience from other options, allowing even the
training of options for time steps where they were not part of the invocation trace.
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Another interesting direction is the introduction of reward decomposition (Juozapaitis
et al., 2019) where the reward signal is split up according to the subgoals. A decomposed
reward signal is more interpretable to the human as each entry in the reward vector has a
specific meaning. Moreover, the options can be trained to explicitly only follow the reward
of the respective subgoal, incentivizing stronger task-specialization.

One further improvement of ω-NUDGE could be achieved through the introduction of
attention. It requires only a simple extension to the already existing Attention Option-
Critic (Chunduru and Precup, 2022). Attention fosters specialization of options and adds
another property serving for interpreting neural options.

Another opportunity lies in the benefit of making lower-level options available to high-level
policies beyond the next higher level. This enables high-level policies to access low-level
actions in cases where needed.

Option interruption (Sutton et al., 1999) is the concept where an option does not only
decide on its own when to terminate but also where an external policy can abort the
execution of an option. It was formally shown by Sutton et al. that interruption is beneficial
in situations where other options become more valuable during the execution of one option.
This would require a redefinition of the termination mechanism. An alternative definition
is proposed in Appendix A.1 in the context of the GAEO.

6.4. Ethical Implications

On a final note, since the development of AI tools comes with foreseeably huge societal
impact, an ethical assessment of the proposed technology falls in the responsibility of its
inventor. ω-NUDGE is a general, foundational framework with no pre-defined use cases.
However, it can be further developed to solve specific real-world tasks. The interpretability
of ω-NUDGE is supposed to be a contribution to more trustworthy AI so that human users
can understand and better interact with AI models. Nevertheless, better interpretability
also means better ability to intervene in the model’s decision process, enabling attackers
to dictate AI models their own rules.

Since complex real-world problems require hierarchical models, ω-NUDGE is also a step
towards real-world application. Modularity and interpretability of ω-NUDGE also help
to generally further optimize models, making their deployment to the real-world more
attractive. While this work strongly encourages to strive towards highly-capable AI models
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that are applied in the real world, there is always the abstract danger of dual use, i.e., that
an ML practitioner—intentionally or not—can apply AI to do harm.
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7. Conclusion

This work introduced ω-NUDGE, a neuro-symbolic policy framework which extends the
Neurally gUided Differentiable loGic policiEs (NUDGE) framework to hierarchical models
that perform temporal abstraction. It incorporates the option framework as well as
the option-critic, combined with Proximal Policy Optimization (PPO). By means of the
newly proposed environment MeetingRoom, it was empirically shown that ω-NUDGE
improves high-level interpretability and performance of NUDGE significantly. Moreover,
the experiments also indicated that the rules provided to ω-NUDGE can guide learning
well when the meta policy and the sub-policies are trained jointly.

The rather limited experiments, however, only cover the tip of an iceberg and more
thorough investigation on other environments is needed. The most important limitation
of meaningless termination functions is an open issue that should be addressed in future
work as well.
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Acronyms

AI Artificial Intelligence.

ALE Arcade Learning Environment.

FOL First-Order Logic.

GAE Generalized Advantage Estimator.

GAEO Generalized Advantage Estimator for Options.

HRL Hierarchical Reinforcement Learning.

MDP Markov Decision Process.

ML Machine Learning.

NN Neural Network.

NUDGE Neurally gUided Differentiable loGic policiEs.

OCAtari Object-Centric Atari.

OCOC Object-Centric Option-Critic.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

SCoBots Successive Concept Bottleneck Agents.
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SMDP Semi-Markov Decision Process.

TD Temporal Difference.

XAI Explainable AI.

XRL Explainable RL.
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A. Appendix

A.1. Pitfalls of the GAEO

The vanilla definition of GAE doesn’t apply to options, see Section 3.3. Therefore, the
Generalized Advantage Estimator for Options (GAEO) was introduced. It uses the value
upon arrival Uω as a surrogate for the value V ω. Although having a sound intuition, this
section shows a major drawback of that definition.

To begin with, note that the GAEO (like the GAE) exhibits a recursive relation

Â
GAEO
t = δωt + γλÂ

GAEO
t+1 . (A.1)

This relation helps to understand the intuition behind the estimator and, besides, it is
used to efficiently and iteratively compute the GAE of an entire trajectory. Recall that

δωt = rt + γUω
t+1 − V ω

t

and

Uω
t = βω

t V
ω̂
t + (1− βt)V

ω
t ,

where ω̂ → ω. In contrast to Â
GAE
t which uses one single value estimator Vt for time step t,

Â
GAEO
t depends on the two estimators V ω̂

t and V ω
t . First, this introduces quite some bias:

The target of the option’s value function receives a signal not only from itself but also from
the higher-level value function. The latter changes over time if not fixed, posing a concept
drift for the lower-level value function and decreasing training stability crucially–in theory
at least. The noise created by V ω̂

t may be magnitudes stronger than the actual reward
signal by rt, effectively disturbing training of V ω

t .

Second, the GAEO may ”explode.” In order to see this, note that we cannot assume that
V ω̂
t and V ω

t follow similar statistics. In particular, the mean Et[V
ω̂
t ] can be significantly
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different from Et[V
ω
t ]. In that case, the expected value upon arrival, Et[U

ω
t ] will be also

different from Et[V
ω
t ]. Hence, even with a normalized reward signal, the TD(0) error δωt

then has a mean that deviates significantly from zero. Consequently, at each iteration
(Equation A.1), an estimator with non-zero mean is added to the running advantage
estimate. As a result, ÂGAEO

t diverges with decreasing t. The divergence increases linearly
in the execution length of the option ω and is proportional to the differenceEt[V

ω
t ]−Et[V

ω̂
t ].

Since we have no guarantees on these two estimators, the difference can be arbitrarily
large and cause the GAEO to be an inadequate estimator.

There exist at least two possible solutions to this issue. However, due to the scope
constraints of this work, the workaround λ := 0 was used, i.e., instead of the GAEO, the
TD(0) error served as an advantage estimate. The possible solutions are left as future
work and include:

(1) One could find regularization methods that enforce the means of V ω̂ and V ω to be
similar. This might, however, affect the expressiveness of these two value functions
and hinder convergence to an optimal solution.

(2) Instead of the value upon arrival, Uω
t , the TD(0) error for options could use the

normal value function V ω
t for all time steps t. The resulting estimator is a mere

canonical extension of GAE where all theoretical guarantees, as worked out by
Schulman et al. (2015) and studied afterwards, apply. With this solution, V ω

doesn’t incorporate higher-level value estimation anymore and estimates the value
as if ω would never terminate. V ω then solely depends on what ω sees during its
execution. Generally, this may be a narrow selection of states in the MDP, especially
if ω is specialized to solve a specific task. V ω became a subjective value function
that evaluates and learns the experience only in the temporally restricted context of
ω. In particular, V ω semantically describes a different valuation concept than V ω̂.
Consequently, it doesn’t make sense to compare V ω against V ω̂ anymore, hence, the
termination function βω looses any point of comparison and needs to be redefined.
Instead of taking the value functions as criteria for termination, the higher-level actor
probabilities could be used as a point of reference. For example, the termination
probability of option ω is set to be high if the higher-level actor sees other options
as more probably useful.
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A.2. Learning a Reasonable Termination Function is Non-Trivial

The experiments showed that training a reasonable and meaningful termination function
turns out to be difficult. Even slight changes in the termination regularizer ξ affect options
to be either very short or very long. Figure A.1 shows the termination probabilities learned
by ω-NUDGE. They do not reflect what one would expect when the respective options
should terminate. However, the heatmaps share one noticeable common characteristic:
The options tend to have low termination probabilities inside doorways. Maybe this is
due to the fact that there is no point in choosing a new option since the new option would
just continue to step through the doorway.

A.3. Implementation

As part of this work, the options framework with state-of-the-art training algorithms
together with a NUDGE integration was implemented. The code is written in Python
using pytorch and can be found publicly on GitHub under

https://github.com/MaggiR/logic-options.

Where applicable, already existing implementations of algorithms and model components
were reused from the stable-baselines3 (SB3) package. This includes PPO and the
GAE computation which got adjusted to options, accordingly. The resulting implementa-
tion is, to the best of the author’s knowledge, the first repository that offers RL training with
agents hat have an arbitrary option hierarchy. Especially, this repository is also the first
that offers option training with PPO and GAE. It offers a wide range of experiment setup
parameters, including observation, reward, and advantage normalization, pre-trained
model loading, learning rate scheduling, etc.

A.3.1. Repository Structure

65

https://github.com/MaggiR/logic-options


Figure A.1.: Termination heatmaps showing the termination probabilities for each free
position on the gridworld. Each column shows the probabilities for the same
option on four different examples.
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in/
- config/
- logic/

src/
- envs/
- logic/
- options/
- utils/

eval.py
play.py
train.py
train_continue.py

The source code folder is divided into the following mod-
ules: The options module contains the implementa-
tion of the option hierarchy and individual options. To-
gether with the meta policy, they are summarized in the
OptionsAgent class which manages forwarding, value
estimation, and predicate conversion. Also, the PPO algo-
rithm (from Section 3.4) for both, actor-critics and termina-
tors, can be found in this module. Finally, GAEO (from Sec-
tion 3.3) is implemented in the RolloutBuffer class.

All NUDGE-related implementations are located in logic.
The class NudgePolicy is the logic actor-critic where the
NSFReasoner class from the NUDGE package is wrapped
as an actor. Environments are wrapped, too, because
predicates need to be translated into actions, next to logic
state extraction from the observations so that the states can be read and evaluated by the
environment-specific valuation functions saved in valuation. Furthermore, the user
can specify FOL rules, atoms, and predicates inside in/logic.

In the envs module, the MeetingRoom implementation is located, together with en-
vironment initialization helper functions. Any other auxiliary functions are included in
utils, along with the agent evaluation function.

A.3.2. How to Use

Experiments are started via the run.py file. Each experiment requires a sufficiently
specified YAML configuration, placed into in/queue. Exemplary configuration file in-
cluding those used for the experiments can be found inside in/config. The user can
observe trained models by running the play.py script where the respective model name
and environment need to be specified. Finally, the eval.py script tests the model and
measures return and episode lengths. With train_continue.py, the user can resume
interrupted training processes.
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A.4. Graphical User Interface for the RAM Extraction Method in
OCAtari

As a side contribution, this work also ships with a Graphical User Interface (GUI) for
improving RAM extraction in OCAtari. This GUI is used to easily analyze and alter the
RAM while manually playing Atari. Furthermore, it optionally renders an overlay of the
detected objects, helping to verify if the RAM extraction is correct. A screenshot of the
GUI is depicted in Figure A.2. The code is already included in the OCAtari package. The
below text is from the included documentation.

Figure A.2.: The GUI for OCAtari RAM Extraction: On the left, the Atari game screen is
rendered together with an overlay showing the extraction results. The right
panel visualizes the entire game RAM as a grid where each cell shows the ID
and the current value of a RAM cell.

Run the GUI via scripts/rem_gui.py. In the __main__ method of rem_gui.py,
you define the Atari game to run. Start the GUI by executing that script file. You play the
Atari game by using the keys W, A, S, D, Space, and Esc. Pause/resume the game with
P, reset it with R.
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Investigating and manipulating the RAM is done as follows: By mouse-clicking any object
on the game screen, all (presumably) relevant RAM cells for that object will be highlighted
blue. You alter a RAM cell by clicking the respective cell (it will be highlighted yellow).
You can then enter a new number (between 0 and 255), confirm with Enter. Changes
become visible only if the game is resumed. Besides, rotating the mouse wheel in- or
decrements the currently hovered cell’s value.

If you click a pixel on the game screen, you execute a causative RAM analysis for that
pixel. The analysis identifies all RAM cells that (individually) affect the appearance of the
clicked pixel by altering the cell’s value and comparing the resulting screen image with
the original one.

A.5. State Abstraction with OCAtari and SCoBots

Abstraction is key to interpretability. Leaving out overwhelming minutiae and aggregating
information to more compact, symbolic knowledge makes a model, the processed concepts
or an explanation more understandable to humans. For instance, humans inherently use
abstractions in their language to elucidate complex concepts. (Miller, 2017) In fact, many
XAI methods can be understood as abstractions. For example, feature importance methods
rank input features based on their importance to the model’s decision, simplifying the
view of what matters the most. Techniques like LIME (Local Interpretable Model-agnostic
Explanations) (Doshi-Velez and Kim, 2017) work by approximating complex models with
simpler, interpretable models for specific instances. This acts as an abstraction layer that
can be more readily understood by humans. Abstraction in RL is useful to drastically
reduce the state space, i.e., the MDP, simplifying the RL problem and reducing sample
complexity. Consequently, abstraction received large interest and various abstraction
methods were proposed and studied. (Abel, 2022) In RL, abstraction can be done for
states, actions, and both intertwined. This work prepares ω-NUDGE to be applied to the
OCAtari, an Atari game environment with object-centric state representations.

A.5.1. Seeing the Forest, not Just the Trees

In many visual applications, states are represented as RGB pixel matrices. Reasoning on
such data, however, affords only limited potential for interpretability for two main reasons.
First, high-dimensional data typically requires large models like convolutional neural nets
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Figure A.3.: The idea of SCoBots: First, an object detector ω extracts objects and their
properties from the raw environment observation. Second, a feature selector
µ computes object relations. Finally, an action selector ρ decides upon the
next action based on the relations. The expert prunes out unneeded objects
or properties, defines relations, removes useless actions, and modifies the
reward signal, making use of the relations.

to process–model size opposes interpretability. Second, symbolic reasoning, for example
with First-Order Logic (FOL), requires symbolic state representation. Fortunately, most of
the information in the high-dimensional input is redundant, allowing us to extract the
relevant core aspects and represent it in a low-dimensional way. This state abstraction
process is formally represented by a function ϕ : S → Sϕ mapping the raw state s ∈ S onto
a lower-dimensional state sϕ ∈ Sϕ. (Abel, 2022) Moreover, multiple raw states can have
the same abstracted representation. For this reason, ϕ induces a new decision processMϕ

called abstract MDP. State abstraction is slightly different from the attention mechanism
(Vaswani et al., 2017) in that state abstraction deterministically and explicitly maps the
entire high-dimensional state space into a low-dimensional space while attention is a
rather implicit, learned, and not necessarily interpretable information extraction function,
also potentially depending on the internal model state.

OCAtari The Arcade Learning Environment (ALE) (Bellemare et al., 2012) is a set of Atari
2600 video games and serves as an entrenched RL benchmark, also in this work. Natively,
the Atari game states are represented as RGB pixel matrices. Therefore, this work uses
the Object-Centric Atari (OCAtari) (Delfosse et al., 2023a) environment which, instead of
a pixel image, returns a list of objects with corresponding properties like position, size,
color, speed, inherent value, etc. OCAtari reconstructs that symbolic state representation
from the game RAM.

70



SCoBots Successive Concept Bottleneck Agents (SCoBots), an ongoing work by Delfosse
et al. (2023c), is an interactive framework which translates high-dimensional, raw en-
vironment observations into low-dimensional relational representations, maintaining
interpretability. The expert user defines the relations to use, for example, relative distance
or speed between two objects, total object counts, etc. Furthermore, the expert prunes
out redundant or unnecessary information and excludes unused actions from the action
space. By successively adding more concept layers, the user can define even higher-level,
abstract relations such as the averaged speed of a swarm of objects. See A.3 for a visual
summary.

The low-dimensional, interpretable concept bottleneck improves overall model inter-
pretability and explainability. Furthermore, the relational concept bottlenecks offer
opportunities to the expert to guide model training, for example through reward shaping
using the relations. SCoBots also help uncover misalignment in the agent, i.e., making the
right actions for the wrong reasons. In this work, SCoBots serve as the state abstraction
function for ALE experiments.
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